Please use this identifier to cite or link to this item: https://biore.bio.bg.ac.rs/handle/123456789/5197
Title: Silencing of antibiotic resistance in E. coli with engineered phage bearing small regulatory RNAs
Authors: Libis, Vincent K.
Bernheim, Aude G.
Basier, Clovis
Jaramillo-Riveri, Sebastián
Deyell, Matthew
Aghoghogbe, Idonnya
Atanasković, Iva 
Bencherif, Amel Camélia
Benony, Marguerite
Koutsoubelis, Nicolas
Löchner, Anne C.
Marinković, Zoran S.
Zahra, Sarah
Zegman, Yonatan
Lindner, Ariel B.
Wintermute, Edwin H.
Issue Date: 19-Dec-2014
Rank: M21
Publisher: National Library of Medicine
Citation: Bacteriophage Technology and Modern Medicine. Azam AH, Tan XE, Veeranarayanan S, Kiga K, Cui L. Antibiotics (Basel). 2021 Aug 18;10(8):999. doi: 10.3390/antibiotics10080999. PMID: 34439049 Free PMC article. Review. Rekindling of a Masterful Precedent; Bacteriophage: Reappraisal and Future Pursuits. Abd-Allah IM, El-Housseiny GS, Yahia IS, Aboshanab KM, Hassouna NA. Front Cell Infect Microbiol. 2021 May 31;11:635597. doi: 10.3389/fcimb.2021.635597. eCollection 2021. PMID: 34136415 Free PMC article. Review. The bactericidal efficacy of femtosecond laser-based therapy on the most common infectious bacterial pathogens in chronic wounds: an in vitro study. Ahmed E, El-Gendy AO, Moniem Radi NA, Mohamed T. Lasers Med Sci. 2021 Apr;36(3):641-647. doi: 10.1007/s10103-020-03104-0. Epub 2020 Jul 28. PMID: 32725427 Advances in engineered trans-acting regulatory RNAs and their application in bacterial genome engineering. Ahmed W, Hafeez MA, Ahmed R. J Ind Microbiol Biotechnol. 2019 Jun;46(6):819-830. doi: 10.1007/s10295-019-02160-y. Epub 2019 Mar 18. PMID: 30887255 Review. Phage Therapy in the Postantibiotic Era. Gordillo Altamirano FL, Barr JJ. Clin Microbiol Rev. 2019 Jan 16;32(2):e00066-18. doi: 10.1128/CMR.00066-18. Print 2019 Apr. PMID: 30651225 Free PMC article. Review.
Journal: ACS Synthetic Biology
Volume: 3
Issue: 12
Start page: 1003
End page: 1006
Abstract: 
In response to emergent antibiotic resistance, new strategies are needed to enhance the effectiveness of existing antibiotics. Here, we describe a phagemid-delivered, RNA-mediated system capable of directly knocking down antibiotic resistance phenotypes. Small regulatory RNAs (sRNAs) were designed to specifically inhibit translation of chloramphenicol acetyltransferase and kanamycin phosphotransferase. Nonlytic phagemids coding for sRNA expression were able to infect and restore chloramphenicol and kanamycin sensitivity to populations of otherwise resistant E. coli. This modular system could easily be extended to other bacteria with resistance profiles that depend on specific transcripts.
URI: https://biore.bio.bg.ac.rs/handle/123456789/5197
DOI: 10.1021/sb500033d
Appears in Collections:Journal Article

Show full item record

SCOPUSTM   
Citations

31
checked on Dec 17, 2024

Page view(s)

4
checked on Dec 17, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.