Please use this identifier to cite or link to this item: https://biore.bio.bg.ac.rs/handle/123456789/4842
Title: Combining machine learning and non-linear dynamics modeling to understand COVID-19 risk factors
Authors: Đorđević, Marko 
Salom, I.
Djordjevic, M.
Marković, Sofija 
Rodić, Anđela 
Milicevic, M.
Tumbas Z. Marko 
Zigic, D.
Issue Date: 4-Jul-2022
Rank: M34
Publisher: Federal Res. Center - Inst. of Cytology and Genetics SB RAS
Citation: Djordjevic M, Salom I, Djordjevic M, Sofija M, Rodic A, Milicevic M, Tumbas M, Zigic D. (2022) Combining machine learning and non-linear dynamics modeling to understand COVID-19 risk factors. 13th International Multiconference on Bioinformatics of Genome Regulation and Structure/Systems Biology - BGRS/SB, 04-08 July 2022, Novosibirsk, Russia, Book of abstracts (pp.897-898), Published by: Federal Res. Center - Inst. of Cytology and Genetics SB RAS.
Start page: 897
End page: 898
Conference: 13th Internationa Multiconference on Bioinformatics of Genome Regulation and Structure/Systems Biology
Description: 
Book of abstracts (pp.897-898)
URI: https://biore.bio.bg.ac.rs/handle/123456789/4842
Appears in Collections:Conference abstract

Show full item record

Page view(s)

14
checked on Jan 21, 2025

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.