Please use this identifier to cite or link to this item:
https://biore.bio.bg.ac.rs/handle/123456789/7260
Title: | Impact of Skin Exposure to Benzo[a]pyrene in Rat Model: Insights into Epidermal Cell Function and Draining Lymph Node Cell Response | Authors: | Malešević, Anastasija Tucović, Dina Kulaš, Jelena Mirkov, Ivana Popović, Dušanka Čakić-Milošević, Maja Popov Aleksandrov, Aleksandra |
Keywords: | draining lymph nodes cell activity;epicutaenous benzo[a]pyrene application;epidermal cell activity;rats;skin explants | Issue Date: | 8-Aug-2024 | Rank: | M21 | Publisher: | MDPI | Journal: | International journal of molecular sciences | Volume: | 25 | Issue: | 16 | Start page: | 8631 | Abstract: | The skin is a direct target of the air pollutant benzo[a]pyrene (BaP). While its carcinogenic qualities are well-studied, the immunotoxicity of BaP after dermal exposure is less understood. This study examines the immunomodulatory effects of a 10-day epicutaneous BaP application, in environmentally/occupationally relevant doses, by analyzing ex vivo skin immune response (skin explant, epidermal cells and draining lymph node/DLN cell activity), alongside the skin's reaction to sensitization with experimental hapten dinitrochlorobenzene (DNCB). The results show that BaP application disrupts the structure of the epidermal layer and promotes immune cell infiltration in the dermis. BaP exposure led to oxidative stress in epidermal cells, characterized by decreased reduced glutathione and increased AHR and Cyp1A1 expression. Production and gene expression of proinflammatory cytokines (TNF, IL-1β) by epidermal cells decreased, while IL-10 response increased. Decreased spontaneous production of IFN-γ and IL-17, along with unchanged IL-10, was observed in DLC cells, whereas ConA-stimulated production of these cytokines was elevated. Local immunosuppression caused by BaP application seems to reduce the skin's response to an additional stimulus, evidenced by decreased effector activity of DLN cells three days after sensitization with DNCB. These findings provide new insight into the immunomodulatory effects and health risks associated with skin exposure to BaP. |
URI: | https://biore.bio.bg.ac.rs/handle/123456789/7260 | ISSN: | 1422-0067 | DOI: | 10.3390/ijms25168631 |
Appears in Collections: | Journal Article |
Show full item record
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.