Please use this identifier to cite or link to this item: https://biore.bio.bg.ac.rs/handle/123456789/7450
DC FieldValueLanguage
dc.contributor.authorSavić-Zdravković, D.en_US
dc.contributor.authorSimović, P.en_US
dc.contributor.authorRadenković, M.en_US
dc.contributor.authorPredić, B.en_US
dc.contributor.authorMilosavljević, A.en_US
dc.contributor.authorStojanović, Katarinaen_US
dc.contributor.authorMilošević, Đ.en_US
dc.date.accessioned2024-11-25T10:16:19Z-
dc.date.available2024-11-25T10:16:19Z-
dc.date.issued2024-06-17-
dc.identifier.urihttps://biore.bio.bg.ac.rs/handle/123456789/7450-
dc.descriptionBook of Abstracts, p. 58en_US
dc.titleIntegrating Deep Learning for Enhanced Bioassessment of Aquatic Invertebrates: A Case Study in Chironomid Ecologyen_US
dc.typeConference Paperen_US
dc.relation.conference22 nd International Symposium on Chironomidae, Serbia, Nišen_US
dc.description.rankM34en_US
dc.coverage.isbn978-86-6275-160-7en_US
item.openairetypeConference Paper-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
crisitem.author.deptChair of Invertebrate Zoology and Entomology-
crisitem.author.orcid0000-0002-1064-792X-
crisitem.author.parentorgInstitute of Zoology-
Appears in Collections:Conference abstract
Show simple item record

Page view(s)

20
checked on Jan 21, 2025

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.