Please use this identifier to cite or link to this item: https://biore.bio.bg.ac.rs/handle/123456789/7481
DC FieldValueLanguage
dc.contributor.authorBozic, Dragicaen_US
dc.contributor.authorŽivanović, Jovanaen_US
dc.contributor.authorŽivančević, Katarinaen_US
dc.contributor.authorBaralić, Katarinaen_US
dc.contributor.authorĐukić-Ćosić, Danijelaen_US
dc.date.accessioned2024-11-27T12:00:46Z-
dc.date.available2024-11-27T12:00:46Z-
dc.date.issued2024-01-25-
dc.identifier.issn2072-6694-
dc.identifier.urihttps://biore.bio.bg.ac.rs/handle/123456789/7481-
dc.description.abstractCancer is a leading cause of death worldwide, for which finding the optimal therapy remains an ongoing challenge. Drug resistance, toxic side effects, and a lack of specificity pose significant difficulties in traditional cancer treatments, leading to suboptimal clinical outcomes and high mortality rates among cancer patients. The need for alternative therapies is crucial, especially for those resistant to conventional methods like chemotherapy and radiotherapy or for patients where surgery is not possible. Over the past decade, a novel approach known as bacteria-mediated cancer therapy has emerged, offering potential solutions to the limitations of conventional treatments. An increasing number of in vitro and in vivo studies suggest that the subtype of highly virulent Pseudomonas aeruginosa bacterium called Pseudomonas aeruginosa mannose-sensitive-hemagglutinin (PA-MSHA) can successfully inhibit the progression of various cancer types, such as breast, lung, and bladder cancer, as well as hepatocellular carcinoma. PA-MSHA inhibits the growth and proliferation of tumor cells and induces their apoptosis. Proposed mechanisms of action include cell-cycle arrest and activation of pro-apoptotic pathways regulated by caspase-9 and caspase-3. Moreover, clinical studies have shown that PA-MSHA improved the effectiveness of chemotherapy and promoted the activation of the immune response in cancer patients without causing severe side effects. Reported adverse reactions were fever, skin irritation, and pain, attributed to the overactivation of the immune response. This review aims to summarize the current knowledge obtained from in vitro, in vivo, and clinical studies available at PubMed, Google Scholar, and ClinicalTrials.gov regarding the use of PA-MSHA in cancer treatment in order to further elucidate its pharmacological and toxicological properties.en_US
dc.language.isoenen_US
dc.publisherMDPIen_US
dc.relation.ispartofCancersen_US
dc.subjectPA-MSHAen_US
dc.subjectapoptosisen_US
dc.subjectcanceren_US
dc.subjectimmunomodulating activityen_US
dc.subjectsafetyen_US
dc.titleTrends in Anti-Tumor Effects of Pseudomonas aeruginosa Mannose-Sensitive-Hemagglutinin (PA-MSHA): An Overview of Positive and Negative Effectsen_US
dc.typeJournal Articleen_US
dc.identifier.doi10.3390/cancers16030524-
dc.identifier.pmid38339275-
dc.identifier.scopus2-s2.0-85184685966-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85184685966-
dc.description.rankM21en_US
dc.description.impact4,5en_US
dc.description.startpage524en_US
dc.relation.issn2072-6694en_US
dc.description.volume16en_US
dc.description.issue3en_US
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypeJournal Article-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.deptChair of General Physiology and Biophysics-
crisitem.author.orcid0000-0002-2369-3060-
Appears in Collections:Journal Article
Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.