Please use this identifier to cite or link to this item: https://biore.bio.bg.ac.rs/handle/123456789/6761
DC FieldValueLanguage
dc.contributor.authorTumbas Z. Markoen_US
dc.contributor.authorMarković, Sofijaen_US
dc.contributor.authorSalom, Igoren_US
dc.contributor.authorĐorđević, Markoen_US
dc.date.accessioned2023-11-28T09:03:51Z-
dc.date.available2023-11-28T09:03:51Z-
dc.date.issued2023-
dc.identifier.issn2624-909X-
dc.identifier.urihttps://biore.bio.bg.ac.rs/handle/123456789/6761-
dc.description.abstractUnderstanding sociodemographic factors behind COVID-19 severity relates to significant methodological difficulties, such as differences in testing policies and epidemics phase, as well as a large number of predictors that can potentially contribute to severity. To account for these difficulties, we assemble 115 predictors for more than 3,000 US counties and employ a well-defined COVID-19 severity measure derived from epidemiological dynamics modeling. We then use a number of advanced feature selection techniques from machine learning to determine which of these predictors significantly impact the disease severity. We obtain a surprisingly simple result, where only two variables are clearly and robustly selected-population density and proportion of African Americans. Possible causes behind this result are discussed. We argue that the approach may be useful whenever significant determinants of disease progression over diverse geographic regions should be selected from a large number of potentially important factors.en_US
dc.language.isoenen_US
dc.relation.ispartofFrontiers in big dataen_US
dc.subjectRandom Foresten_US
dc.subjectSARS-CoV-2en_US
dc.subjectXGBoosten_US
dc.subjectfeature selectionen_US
dc.subjectmRMRen_US
dc.subjectsociodemographic factorsen_US
dc.titleA large-scale machine learning study of sociodemographic factors contributing to COVID-19 severityen_US
dc.typeJournal Articleen_US
dc.identifier.doi10.3389/fdata.2023.1038283-
dc.identifier.pmid37034433-
dc.identifier.scopus2-s2.0-85152550520-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85152550520-
dc.description.impact3.1en_US
dc.description.startpage1038283en_US
dc.relation.issn2624-909xen_US
dc.description.volume6en_US
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypeJournal Article-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.deptChair of General Physiology and Biophysics-
crisitem.author.deptChair of General Physiology and Biophysics-
crisitem.author.deptChair of General Physiology and Biophysics-
crisitem.author.orcid0000-0003-1735-4131-
crisitem.author.orcid0000-0001-7506-500X-
crisitem.author.orcid0000-0002-2903-3119-
Appears in Collections:Journal Article
Show simple item record

SCOPUSTM   
Citations

3
checked on Nov 21, 2024

Page view(s)

1
checked on Nov 21, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.