Please use this identifier to cite or link to this item: https://biore.bio.bg.ac.rs/handle/123456789/6250
DC FieldValueLanguage
dc.contributor.authorLozo, Jelenaen_US
dc.contributor.authorRistović, Nemanjaen_US
dc.contributor.authorKungulovski, Goranen_US
dc.contributor.authorJovanović, Živkoen_US
dc.contributor.authorRakić, Tamaraen_US
dc.contributor.authorStanković, Slavišaen_US
dc.contributor.authorRadović, Svetlanaen_US
dc.date.accessioned2023-10-04T09:56:01Z-
dc.date.available2023-10-04T09:56:01Z-
dc.date.issued2023-07-21-
dc.identifier.urihttps://biore.bio.bg.ac.rs/handle/123456789/6250-
dc.description.abstractRhizosphere microbial communities play an important role in maintaining the health and productivity of the plant host. The rhizobacteria Pseudomonas putida P2 of Ramonda serbica and Bacillus cereus P5 of R. nathaliae were selected for treatment of the Belija wheat cultivar because of their plant growth-promoting (PGP) properties. Compared to the non-treated drought-stressed plants, the plants treated with rhizobacteria showed increased activity of the two major antioxidant enzymes, superoxide dismutase, and ascorbate peroxidase. Plants treated with the B. cereus P5 strain exhibited higher proline content under drought stress, suggesting that proline accumulation depends on the relative water content (RWC) status of the plants studied. Inoculation of wheat seeds with the P. putida P2 strain improved water status by increasing RWC and alleviating oxidative stress by reducing H2O2 and malondialdehyde concentrations in plants exposed to severe drought, possibly also helping plants to overcome drought through its 1-aminocyclopropane-1-carboxylic acid deaminase activity. Analysis of data from Next Generation sequencing (NGS) revealed that the dominant bacterial taxa in the rhizosphere of resurrection plants R. serbica and R. nathaliae were extremophilic, thermotolerant, Vicinamibacter silvestris, Chthoniobacter flavus, and Gaiella occulta. From the fungi detected Penicillium was the most abundant in both samples, while Fusarium and Mucor were present only in the rhizosphere of R. serbica and the entomopathogenic fungi Metarhizium, and Tolypocladiumu only in the rhizosphere of R. nathaliae. The fungal communities varied among plants, suggesting a stronger environmental influence than plant species. Our study demonstrates the importance of in vivo experiments to confirm the properties of PGP bacteria and indicates that the rhizosphere of resurrection plants is a valuable source of unique microorganisms that can be used to improve the drought stress tolerance of crops.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofWorld Journal of Microbiology and Biotechnologyen_US
dc.subjectResurrection plant;en_US
dc.subjectRhizosphere microbiome;en_US
dc.subjectRamonda spp.;en_US
dc.subjectDrought stress;en_US
dc.subjectWheat.en_US
dc.titleRhizosphere microbiomes of resurrection plants Ramonda serbica and R. nathaliae: comparative analysis and search for bacteria mitigating drought stress in wheat (Triticum aestivum L.)en_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s11274-023-03702-4-
dc.description.rankM22en_US
dc.description.impact4.1en_US
dc.relation.issn0959-3993en_US
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairetypeArticle-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
crisitem.author.deptChair of Biochemistry and Molecular Biology-
crisitem.author.deptChair of Biochemistry and Molecular Biology-
crisitem.author.deptChair of Plant Ecology and Phytogeography-
crisitem.author.deptChair of Microbiology-
crisitem.author.deptChair of Biochemistry and Molecular Biology-
crisitem.author.orcid0000-0001-9888-5270-
crisitem.author.orcid0000-0003-1626-1531-
crisitem.author.orcid0000-0001-6959-3439-
crisitem.author.orcid0000-0003-0527-8741-
crisitem.author.orcid0000-0002-7546-6468-
Appears in Collections:Journal Article
Show simple item record

SCOPUSTM   
Citations

1
checked on May 8, 2024

Page view(s)

26
checked on May 14, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.