Please use this identifier to cite or link to this item: https://biore.bio.bg.ac.rs/handle/123456789/4039
DC FieldValueLanguage
dc.contributor.authorElaković, Ivanaen_US
dc.contributor.authorDjordjevic, Anaen_US
dc.contributor.authorAdzic, Miroslaven_US
dc.contributor.authorDjordjevic, Jelenaen_US
dc.contributor.authorRadojčić, Marijaen_US
dc.contributor.authorMatić, Gordanaen_US
dc.date.accessioned2021-04-16T18:00:03Z-
dc.date.available2021-04-16T18:00:03Z-
dc.date.issued2011-
dc.identifier.issn0006-8993-
dc.identifier.urihttps://biore.bio.bg.ac.rs/handle/123456789/4039-
dc.description.abstractGender-related differences in dexamethasone binding to corticosteroid receptors (CR) and in glucocorticoid receptor (GR) protein level in the pituitary, hypothalamus, hippocampus and prefrontal cortex were studied before and after antidepressant fluoxetine administration to both unstressed and rats exposed to a chronic social isolation stress. Untreated males, in comparison to females, displayed higher hormone-binding capacity of both GR and mineralocorticoid receptor (MR) in the hippocampal cytosol, as well as higher GR protein level in the pituitary cytosol. In both genders, dexamethasone binding to MR exceeded that to GR. While fluoxetine treatment and social isolation had no effect on GR activity, the influence on MR was gender-specific. Fluoxetine facilitated MR hormone-binding only in females, increasing the MR/GR activity ratio. In contrast, after a 6-week isolation of males, MR binding capacity was diminished and MR/GR ratio inverted in favor of GR. In addition, fluoxetine induced elevation of cytosolic GR protein level in the pituitary and hypothalamus, the latter change being gender-specific. The results point to gender-related differences in the CRs functioning and suggest that both MR and GR may contribute to well-known sexual dimorphism in vulnerability to stress and stress-related disorders and in the outcome of antidepressant treatment.en_US
dc.language.isoenen_US
dc.relation.ispartofBrain Researchen_US
dc.relation.ispartofseries1384;61-68-
dc.titleGender-specific response of brain corticosteroid receptors to stress and fluoxetineen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.brainres.2011.01.078-
dc.identifier.pmid21281618-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.fulltextWith Fulltext-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.deptChair of Biochemistry and Molecular Biology-
crisitem.author.orcid0000-0002-0142-1056-
Appears in Collections:Journal Article
Files in This Item:
File Description SizeFormat Existing users please
Elakovic-BrainRes-2011.pdf634.1 kBAdobe PDF
    Request a copy
Show simple item record

SCOPUSTM   
Citations

19
checked on Nov 21, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.