Please use this identifier to cite or link to this item: https://biore.bio.bg.ac.rs/handle/123456789/1054
DC FieldValueLanguage
dc.contributor.authorQuicke, Peteren_US
dc.contributor.authorSong, Chenchenen_US
dc.contributor.authorMcKimm, Eric J.en_US
dc.contributor.authorMilošević, Milenaen_US
dc.contributor.authorHowe, Carmel L.en_US
dc.contributor.authorNeil, Marken_US
dc.contributor.authorSchultz, Simon R.en_US
dc.contributor.authorAntic, Srdjan D.en_US
dc.contributor.authorFoust, Amanda J.en_US
dc.contributor.authorKnöpfel, Thomasen_US
dc.date.accessioned2019-07-23T12:43:57Z-
dc.date.available2019-07-23T12:43:57Z-
dc.date.issued2019-01-29-
dc.identifier.issn1662-5102-
dc.identifier.urihttps://biore.bio.bg.ac.rs/handle/123456789/1054-
dc.description.abstract© 2019 Quicke, Song, McKimm, Milosevic, Howe, Neil, Schultz, Antic, Foust and Knöpfel. Voltage imaging of many neurons simultaneously at single-cell resolution is hampered by the difficulty of detecting small voltage signals from overlapping neuronal processes in neural tissue. Recent advances in genetically encoded voltage indicator (GEVI) imaging have shown single-cell resolution optical voltage recordings in intact tissue through imaging naturally sparse cell classes, sparse viral expression, soma restricted expression, advanced optical systems, or a combination of these. Widespread sparse and strong transgenic GEVI expression would enable straightforward optical access to a densely occurring cell type, such as cortical pyramidal cells. Here we demonstrate that a recently described sparse transgenic expression strategy can enable single-cell resolution voltage imaging of cortical pyramidal cells in intact brain tissue without restricting expression to the soma. We also quantify the functional crosstalk in brain tissue and discuss optimal imaging rates to inform future GEVI experimental design.en_US
dc.language.isoenen_US
dc.relation.ispartofFrontiers in Cellular Neuroscienceen_US
dc.subjectCerebral cortexen_US
dc.subjectOptogeneticsen_US
dc.subjectSparse expressionen_US
dc.subjectTransgenicen_US
dc.subjectVoltage imagingen_US
dc.titleSingle-neuron level one-photon voltage imaging with sparsely targeted genetically encoded voltage indicatorsen_US
dc.typeArticleen_US
dc.identifier.doi10.3389/fncel.2019.00039-
dc.identifier.pmid30890919-
dc.identifier.scopus2-s2.0-85064200676-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85064200676-
dc.description.rankM21-
dc.description.impact5.574-
item.cerifentitytypePublications-
item.grantfulltextrestricted-
item.openairetypeArticle-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptChair of General Physiology and Biophysics-
crisitem.author.orcid0000-0002-6138-6766-
Appears in Collections:Journal Article
Files in This Item:
File Description SizeFormat Existing users please
1 Single-Neuron Level One-Photon.pdf6.34 MBAdobe PDF
    Request a copy
Show simple item record

SCOPUSTM   
Citations

13
checked on Apr 22, 2024

Page view(s)

12
checked on Apr 28, 2024

Download(s)

3
checked on Mar 26, 2023

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.